

Keys to a Successful Thermal Conversion Technology Facility in Canada

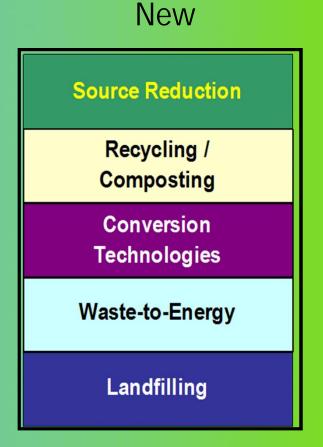
Webinar National Solid Waste Benchmarking Initiative (NSWBI)

Shapoor Hamid, PhD

Presentation Content

- Solid waste management hierarchy
- Conversion technology (CT) overview
- Thermal conversion technologies
- Anatomy of a conversion facility
- Overcoming challenges
- Benefits of thermal CTs
- Who should consider thermal CTs
- Approach to a successful thermal CT project
- Examples of potential successful projects

Solid Waste Management Hierarchy


Existing

Recycling / Composting

Waste-to-Energy

Landfilling

What is a Conversion Technology (CT)?

A conversion technology converts the carbonbased portion of MSW, biomass or biosolids into useful products including electricity, fuel, chemicals, and fertilizer

CTs are not Incinerators

Three Major Categories of CTs

- Thermal Can treat both organic and carbon-based (plastic) materials using higher temperatures (>700° F). Typically has a lower residual than biological technologies and more efficient.
- Biological Can decompose biodegradables using low temperatures (<400° F). Has a higher volume of residual than thermal technologies

3. <u>Hybrid and Others</u> – These are combination of thermal and biological mostly emerging

Types of Thermal and Biological CTs

1 – Thermal CTs – Can handle all waste including food waste

Gasification

Pyrolysis

- Pyrolysis/Gasification
- Plasma Gasification

- 2 Biological and Hybrid CTs Needs source separation
- Anaerobic Digestion (AD)
- Gasification/Fermentation

- Thermal degradation of organic materials using an indirect, external source of heat, at 750-1,650°F, in the absence or almost complete absence of oxygen, producing syngas
- The syngas (primarily H₂ and CO) can be used to produce electricity, fuel, or other chemicals
- Byproducts are carbon char, silica, metals, and inorganic materials

Gasification

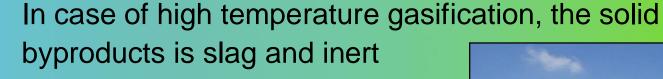
Thermal conversion of organic materials at 1,400-2,500°F with a limited supply of oxygen, producing a syngas

The syngas (primarily H₂ and CO) can be used to produce electricity, fuel, other chemicals.



Inorganic materials are converted to bottom ash or slag

Pyrolysis/Gasification



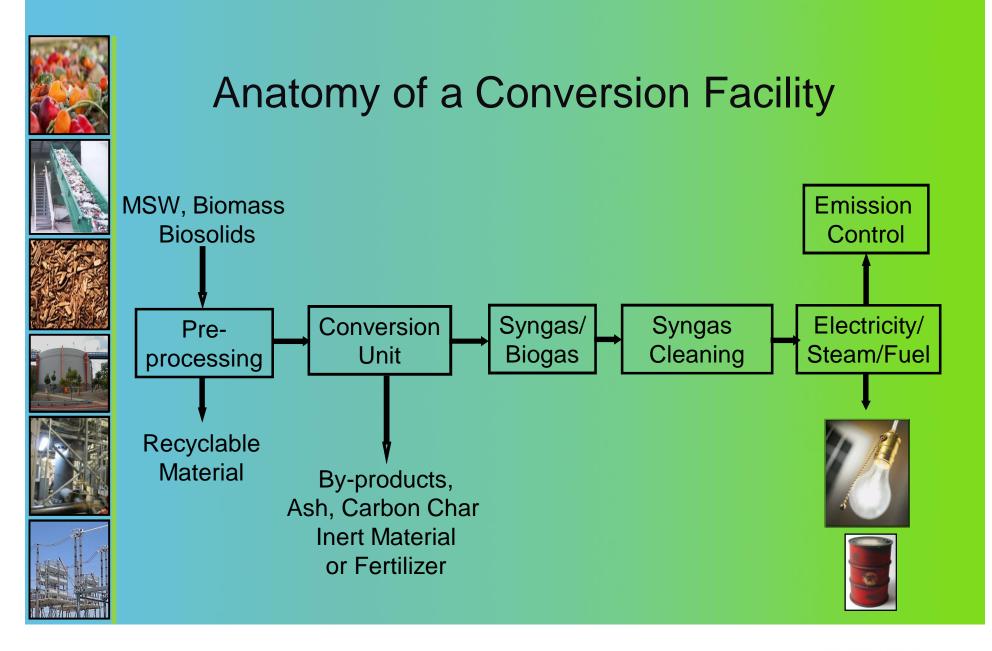
Thermal degradation of organic materials using pyrolysis to produce syngas and carbon char as solid byproduct

The byproduct (carbon char) is going through gasification process to produce additional syngas

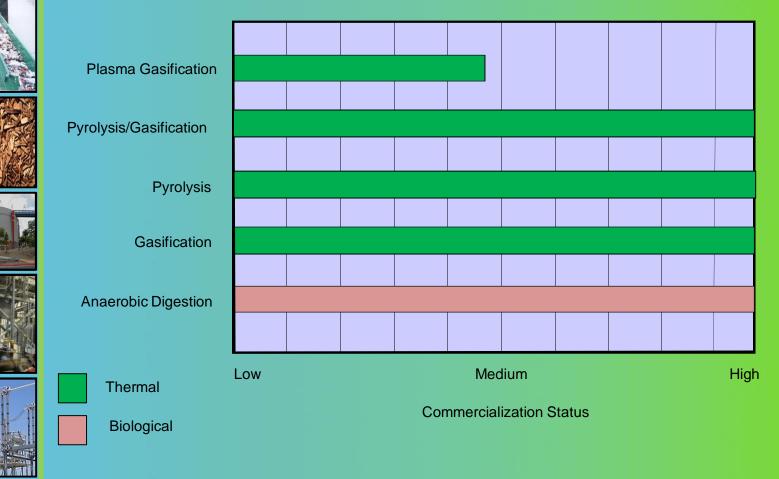
Plasma Gasification

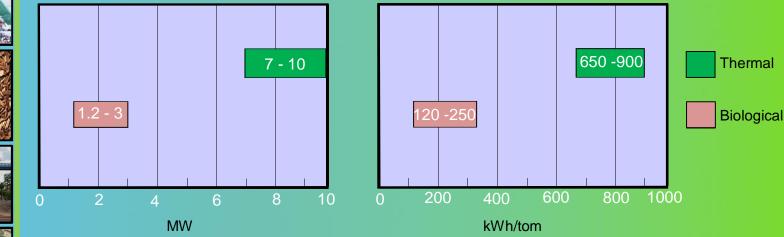
Uses AC and/or DC to produce an ionizing gas (plasma) at 6,000-10,000°F

Extensive use for destroying hazardous and medical wastes, melting incinerator ash to form inert slag



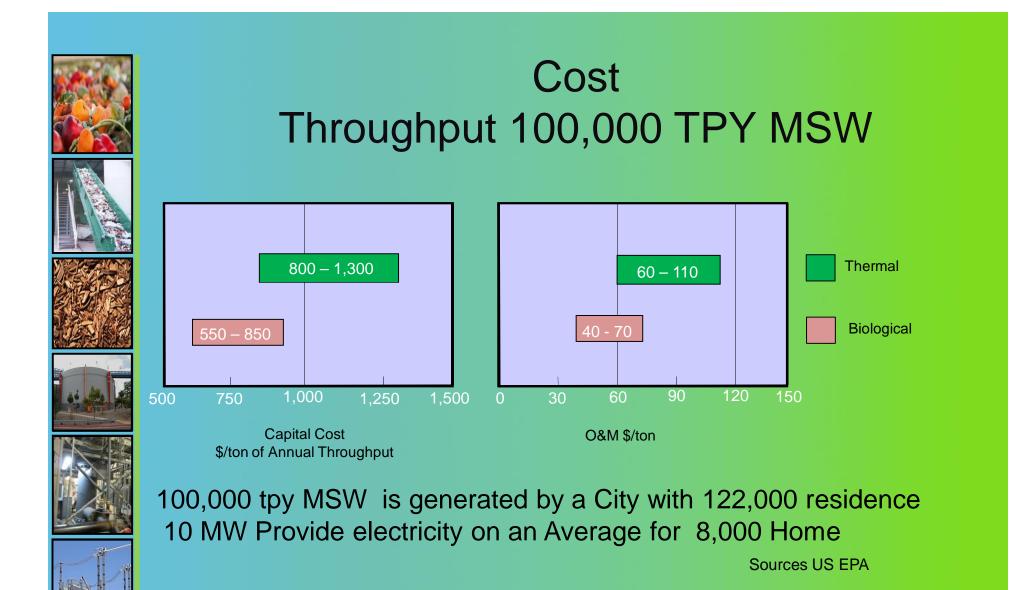
New applications for processing MSW





CTs Commercialization Status

Efficiency - Electricity Generation Throughput 100,000 TPY MSW



100,000 tpy MSW is generated by a City with 122,000 residence 10 MW Provide electricity on an Average for 8,000 Home

Sources US EPA

Overcoming Challenges (Managing Risks)

- Perform a comprehensive technical evaluation
- Match vendor's experience to your risk profile
- Evaluate vendor's experience with heterogeneous feedstock such as MSW
- Evaluate integration of pre-processing, conversion system, and power or fuel generation
- Regarding cost uncertainty, risk is *inversely* related to experience
- Implement an effective public education and outreach program

- Waste diversion from landfills
- Modulized systems (flexibility in size)
- Help to manage waste locally
- Increase recycling
- Reduce greenhouse gas emissions
- Reduce air emissions
- Generate renewable energy
- Maximize value of by products and residuals

Environmental Sustainability

Who Should Consider Thermal CTs?

- Municipalities with higher tipping fees and limited landfill capacities
- Municipalities with existing infrastructures MRFs, TS, landfills, WTE or as part of AD facilities
- Willingness and ability to subsidize
- Municipalities with renewable energy goals
- Military basis and Islands with sustainability goals
- Entities processing tires, biomass, and MSW to generate renewable energy/fuel

Approach to Successful Thermal CT Projects

- Formulate the objective(s) clearly
- Evaluate feedstock
- Determine infrastructure availability
- Select the right technology
- Evaluate preprocessing issues
- Identify benefits and challenges cost
- Evaluate end products characteristics and marketability

Edmonton Solid Waste Integrated Facility

- The City of Edmonton operates a number of solid waste facilities at the Edmonton Waste Management Center.
- Material Recovery Facility (MRF): 40,000 TPY (160 TPD) with 10% residual.
- Composting Facility: 180,000 TPY (720 TPD)
- Clover Bar Landfill Overcapacity and closing: 400,000 TPY (1,600 TPD)

Edmonton Solid Waste Integrated Facility

Transfer station capacity 400,000 TPY (1,600 TPD) 180,000 TPY (720 TPD) for composting

Edmonton Solid Waste Integrated Facility

- 1. Pre-processing facility sorts waste for:
 - Composting facility
 - Refuse derived fuel (RDF) facility
- 2. Gasification facility: 100,000 TPY
- 3. Other supporting facilities

City of Ames, Iowa

Existing infrastructure and public support

- Resource recovery facility
- Waste to energy facility
- The right feedstock composition for a thermal CT

- Political, regulatory, and public support
- Completed technical and financial feasibility studies

City of Cleveland, Ohio

- Feedstock availability (quantity and quality)
- Site and infrastructure availability with Road Ridge transfer station
- Public, regulatory, and stakeholders support
- Completed financial feasibility including financial models

Conclusion

CTs are here and they will stay here. They are the future of solid waste disposal alternative

Thanks for Listening

Contact

Shapoor Hamid, PhD Principal Scientist 915 Wilshire Boulevard Suite 700 Los Angeles, CA 90017 Tel: (213) 996-2630 Email: shapoor.hamid@aecom.com

